nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 03, v.39 1-8
纳米纤维素复合水凝胶的制备及其在食品工业中的研究进展
基金项目(Foundation): 国家重点研发计划资助项目(2022YFC2105503)
邮箱(Email):
DOI: 10.13364/j.issn.1672-6510.20230088
摘要:

随着石油基聚合物的过度消耗、地球资源的日渐减少,能源枯竭、环境污染等问题逐渐显现。为了解决这些问题,寻求可持续资源、开发低成本材料的研究迫在眉睫。纳米纤维素复合水凝胶在兼具传统水凝胶良好的柔韧性、高比表面积的基础上结合了纳米纤维素具有的独特纳米级结构以及相容性好、可再生、可降解等优点,同时表现出机械增强和许多其他理想的性能,从而被广泛应用于生物医药、组织工程、药物递送等领域,近年来其在食品工业中的研究也逐渐兴起。本文总结了纳米纤维素复合水凝胶的不同制备方法,介绍其在食品活性包装、智能包装和食品安全传感等方面的应用,并对纳米纤维素复合水凝胶未来的发展进行展望,为纳米纤维素复合水凝胶在食品工业中的实际应用提供参考。

Abstract:

With the excessive consumption of petroleum-based polymers and the decreased earth resources,problems such as energy depletion and environmental pollution have gradually emerged. In order to solve these problems,it is urgent to seek sustainable resources and develop low-cost materials. Nanocellulose composite hydrogel combine the advantages of nanocellulose's unique nanoscale structure,good compatibility,renewability and degradability on the basis of good flexibility and high specific surface area of traditional hydrogel. At the same time,they also show mechanical enhancement and many other ideal properties,so they are widely used in biomedicine,tissue engineering,drug delivery and other fields. In recent years,research on them in the food industry has gradually emerged. This review article starts with a summary of different preparation methods of nanocellulose composite hydrogel,followed by an introduction of their applications in food active packaging,intelligent packaging and food safety sensing. At the end of the article,we further predict the future development of nanocellulose composite hydrogel,in order to provide reference for the practical application of nanocellulose composite hydrogel in food industry.

参考文献

[1] GUAN Q F,YANG H B,HAN Z M,et al. Lightweight,tough,and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient[J]. Science advances,2020,6(18):eaaz1114.

[2] FENG X L,WU H R,SUI X F,et al. Thin film hydrogels from redox responsive poly(ferrocenylsilanes):preparation,properties,and applications in electrocatalysis[J]. European polymer journal,2015,72:535±542.

[3]黄彪,林凤采,唐丽荣,等.功能性纤维素基水凝胶材料及其应用研究进展[J].林业工程学报,2022,7(2):1±13.

[4] YE D D,CHENG Q Y,ZHANG Q L,et al. Deformation drives alignment of nanofibers in framework for inducing anisotropic cellulose hydrogels with high toughness[J].ACS Applied materials&interfaces,2017,9(49):43154±43162.

[5]饶涛,何显儒.高强度物理交联水凝胶综述[J].塑料工业,2022,50(7):6±11.

[6] LIU X L,QU J L,WANG A,et al. Hydrogels prepared from cellulose nanofibrils via ferric ion-mediated crosslinking reaction for protecting drilling fluid[J].Carbohydrate polymers,2019,212:67±74.

[7] LU P,LIU R,LIU X,et al. Preparation of self-supporting bagasse cellulose nanofibrils hydrogels induced by zinc ions[J]. Nanomaterials,2018,8(10):800.

[8] BASU A,HEITZ K,STR?MME M,et al. Ioncrosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties:candidate materials for advanced wound care applications[J]. Carbohydrate polymers,2018,181:345±350.

[9] HU J Q,WU Y L,YANG Q,et al. One-pot freezingthawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring[J]. Carbohydrate polymers,2022,275:118697.

[10] LU Q L,ZHANG S H,XIONG M C,et al. One-pot construction of cellulose-gelatin supramolecular hydrogels with high strength and pH-responsive properties[J].Carbohydrate polymers,2018,196:225±232.

[11] SONG S,LIU Z,ABUBAKER M A,et al. Antibacterial polyvinyl alcohol/bacterial cellulose/nano-silver hydrogels that effectively promote wound healing[J]. Materials science and engineering:C,2021,126:112171.

[12] GONZALEZ J S,LUDUE?A L N,PONCE A,et al.Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings[J]. Materials science and engineering:C,2014,34:54±61.

[13]王少卿,牟鸣薇,张博,等.复合水凝胶在食品中的应用研究进展[J].食品与机械,2022,38(12):212±217.

[14] ZHAO T,ZHANG S S,BI Y T,et al. Development and characterisation of multi-form composite materials based on silver nanoclusters and cellulose nanocrystals[J]. Colloids and surfaces A:physicochemical and engineering aspects,2020,603:125257.

[15] WANG C M Z,WANG L,ZHANG Q L,et al. Preparation and characterization of apoacynum venetum cellulose nanofibers reinforced chitosan-based composite hydrogels[J]. Colloids and surfaces B:biointerfaces,2021,199:111441.

[16] NIGMATULLIN R,GABRIELLI V,MU?OZ-GARCíA J C,et al. Thermosensitive supramolecular and colloidal hydrogels via self-assembly modulated by hydrophobized cellulose nanocrystals[J]. Cellulose,2019,26:529±542.

[17] WEI P D,YU X J,FANG Y J,et al. Strong and tough cellulose hydrogels via solution annealing and dual crosslinking[J]. Small,2023,19(28):2301204.

[18] YANG L,WANG C F,CHEN L P,et al. Effect of aldehydes crosslinkers on properties of bacterial cellulosepoly(vinyl alcohol)(BC/PVA)nanocomposite hydrogels[J]. Fibers and polymers,2017,18(1):33±40.

[19] HIROKI A,TAGUCHI M. Development of environmentally friendly cellulose derivative-based hydrogels for contact lenses using a radiation crosslinking technique[J]. Applied sciences,2021,11(19):9168.

[20] MOHAMAD N,BUANG F,LAZIM A M,et al. Characterization and biocompatibility evaluation of bacterial cellulose based wound dressing hydrogel:effect of electron beam irradiation doses and concentration of acrylic acid[J]. Journal of biomedical materials research part B:applied biomaterials,2017,105(8):2553±2564.

[21] CHEN H,GAN J,JI A,et al. Development of double network gels based on soy protein isolate and sugar beet pectin induced by thermal treatment and laccase catalysis[J]. Food chemistry,2019,292:188±196.

[22] TSAI C C,HONG Y J,LEE R J,et al. Enhancement of human adipose-derived stem cell spheroid differentiation in an in situ enzyme-crosslinked gelatin hydrogel[J].Journal of materials chemistry B,2019,7(7):1064±1075.

[23] GUO J,JIN Y C,YANG X Q,et al. Computed microtomography and mechanical property analysis of soy protein porous hydrogel prepared by homogenizing and microbial transglutaminase cross-linking[J]. Food hydrocolloids,2013,31(2):220±226.

[24] CHOI Y R,KIM E H,LIM S,et al. Efficient preparation of a permanent chitosan/gelatin hydrogel using an acidtolerant tyrosinase[J]. Biochemical engineering journal,2018,129:50±56.

[25] DONG Y Q,ZHAO S W,LU W H,et al. Preparation and characterization of enzymatically cross-linked gelatin/cellulose nanocrystal composite hydrogels[J]. RSC Advances,2021,11(18):10794±10803.

[26]杨帆,马建中,鲍艳.纳米纤维素及其在水凝胶中的研究进展[J].材料导报,2019,33(7):1227-1233.

[27]车春波,李思航,刘双易,等.纤维素基水凝胶的制备及其溶胀性能研究[J].哈尔滨商业大学学报(自然科学版),2022,38(6):668-673.

[28] JIANG X H,MIETNER J B,HARDER C,et al. 3D printable hybrid gel made of polymer surface-modified cellulose nanofibrils prepared by surface-initiated controlled radical polymerization(si-set-lrp)and upconversion luminescent nanoparticles[J]. ACS Applied materials&interfaces,2023,15(4):5687±5700.

[29] WANG B B,DAI L,HUNTER L A,et al. A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications[J]. Carbohydrate polymers,2021,268:118210.

[30] VILARINHO F,SILVA A S,VAZ M F,et al. Nanocellulose in green food packaging[J]. Critical reviews in food science and nutrition,2018,58(9):1526±1537.

[31]姜尚洁,黄俊彦.现代食品包装新技术:活性包装[J].包装工程,2015,36(21):150±154.

[32] DAI L,XI X J,LI X Y,et al. Self-assembled allpolysaccharide hydrogel film for versatile paper-based food packaging[J]. Carbohydrate polymers,2021,271:118425.

[33] SHAGHALEH H,HAMOUD Y A,XU X,et al. Thermo-/pH-responsive preservative delivery based on TEMPO cellulose nanofiber/cationic copolymer hydrogel film in fruit packaging[J]. International journal of biological macromolecules,2021,183:1911±1924.

[34]许如梦,张金明,张军.纤维素基刺激响应高分子材料研究进展[J].高分子通报,2018(8):119±124.

[35] KOETTING M C,PETERS J T,STEICHEN S D,et al.Stimulus-responsive hydrogels:theory,modern advances,and applications[J]. Materials science and engineering R:reports,2015,93:1±49.

[36] PIRAYESH H,PARK B D,KHANJANZADEH H,et al.Nanocellulose-based ammonia sensitive smart colorimetric hydrogels integrated with anthocyanins to monitor pork freshness[J]. Food control,2023,147:109595.

[37] LU P,YANG Y,LIU R,et al. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging[J]. Carbohydrate polymers,2020,249:116831.

[38] KAHRAMAN M,MULLEN E R,KORKMAZ A,et al.Fundamentals and applications of SERS-based bioanalytical sensing[J]. Nanophotonics,2017,6(5):831±852.

[39] KIM D,GWON G,LEE G,et al. Surface-enhanced Raman scattering-active AuNR array cellulose films for multi-hazard detection[J]. Journal of hazardous materials,2021,402:123505.

[40] LI M,LI X N,XU M W,et al. A ratiometric fluorescent hydrogel of controlled thickness prepared continuously using microtomy for the detection and removal of Hg(Ⅱ)[J]. Chemical engineering journal,2021,426:131296.

[41] LUO Q Y,REN T T,LEI Z H,et al. Non-toxic chitosanbased hydrogel with strong adsorption and sensitive detection abilities for tetracycline[J]. Chemical engineering journal,2022,427:131738.

基本信息:

DOI:10.13364/j.issn.1672-6510.20230088

中图分类号:TQ427.26;TS201

引用信息:

[1]刘鹏涛,樊荣,汪文雪.纳米纤维素复合水凝胶的制备及其在食品工业中的研究进展[J].天津科技大学学报,2024,39(03):1-8.DOI:10.13364/j.issn.1672-6510.20230088.

基金信息:

国家重点研发计划资助项目(2022YFC2105503)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索